The sum of all solutions of the equation $$4 \sin^2 x - 4 \cos x = 1$$ in the interval $$[0, 2\pi]$$ is
$$4 \sin^2 x - 4 \cos x = 1$$
=> $$4\left(1-\cos\ ^2x\right)-4\cos x-1=0$$
=> $$4\cos\ ^2x+4\cos x+1=4$$
$$\left(2\cos x+1\right)^2=2^2$$
$$2\cos x+1=\pm\ 2$$
$$2\cos x=1\ or\ 2\cos x=-3$$
$$\cos x=\frac{1}{2}\ or\ \cos x=-\frac{3}{2}$$
-3/2 is not possible
Hence x can be $$\frac{\pi}{3}\ or\ 2\pi\ -\frac{\pi}{3}$$
Sum = $$2\pi$$
Create a FREE account and get: