Sign in
Please select an account to continue using cracku.in
↓ →
Let [x] denote the greatest integer not exceeding x and {x} = x -[x].
If n is a natural number, then the sum of all values of x satisfying the equation 2[x] = x + n{x} is
Given,
$$2[x]=x+nx$$
or, $$2[x]=x+n(x-[x])$$
or, $$2[x]=x+nx-n[x]$$
or, $$[x](2+n)=x(n+1)$$
or, $$x=\dfrac{\left[x\right]\cdot\left(n+2\right)}{\left(n+1\right)}$$
Now, $$\left[x\right]$$ can take integral values from 1 to n.
So sum of all values of $$x$$ = $$\dfrac{n+2}{n+1}$$ $$\cdot$$ (Sum of all possible values of $$\left[x\right]$$)
=$$\dfrac{n+2}{n+1}\left(1+2+3+4+....+n\right)$$
=$$\dfrac{n+2}{n+1}\times\ \dfrac{n\left(n+1\right)}{2}$$
=$$\dfrac{n\left(n+2\right)}{2}$$
Create a FREE account and get: