Sign in
Please select an account to continue using cracku.in
↓ →
If the harmonic mean of the roots of the equation $$(5 + \sqrt{2})x^{2} − bx + 8 + 2\sqrt{5} = 0$$ is 4 then the value of b is
Given quadratic equation is $$(5 + \sqrt{2})x^{2} − bx + 8 + 2\sqrt{5} = 0$$
Let the roots of the equation be $$\alpha\ $$ and $$\beta\ $$
So, harmonic mean of roots = $$\dfrac{2\alpha\ \beta\ }{\alpha\ +\beta\ }$$
Now, $$\alpha\cdot\beta\ $$ = Product of roots = $$\dfrac{\left(8+2\sqrt{\ 5}\right)}{\sqrt{\ 2}+5}$$
$$\alpha\ +\beta\ $$ = Sum of roots = $$-\dfrac{\left(-b\right)}{\sqrt{\ 2}+5}=\dfrac{b}{\sqrt{\ 2}+5}$$
So, Harmonic mean = $$2\cdot\dfrac{\dfrac{\left(8+2\sqrt{\ 5}\right)}{\sqrt{\ 2}+5}}{\dfrac{b}{\sqrt{\ 2}+5}}=4$$
or, $$2\cdot\dfrac{8+2\sqrt{\ 5}}{b}=4$$
or, $$2\cdot\dfrac{2\left(4+\sqrt{\ 5}\right)}{b}=4$$
or, $$b=4+\sqrt{\ 5}$$
Create a FREE account and get: