In an isosceles right triangle $$PQR, \angle PRQ = 90^\circ$$. The points S and T are two trisection points of QR. The value of $$\tan(\angle SPT)$$ is
Let the isosceles sides be of the length 3x units each. Then, we can draw the triangle with given point as:
Angle SPT= B-A.
tanA= $$\ \frac{\ RT}{PR}=\ \frac{\ x}{3x}=\ \frac{\ 1}{3}\ $$
tanB= $$\ \frac{\ RS}{PR}=\ \frac{\ 2x}{3x}=\ \frac{\ 2}{3}\ $$
So, $$\tan\left(B-A\right)=\ \ \frac{\ \tan B-\tan\ A}{1+\tan\ A\tan\ B}\ $$.
=> $$\ \tan\left(B-A\right)=\ \ \frac{\ \ \frac{\ 2}{3}-\ \frac{\ 1}{3}}{1+\ \frac{\ 2}{9}}$$
=>$$\ \tan\left(B-A\right)=\ \ \frac{\ \ \frac{\ 1}{3}}{\ \ \frac{\ 11}{9}}=\ \frac{\ 3}{11}$$
Create a FREE account and get: