Sign in
Please select an account to continue using cracku.in
↓ →
ΔXYZ is right angled at Y. If cotX = 5/12, then what is the value of secZ ?
Given : $$\cot X$$ = $$\frac{5}{12}$$
Also, $$\cot X=\frac{XY}{YZ}=\frac{5}{12}$$
Let XY = 5 cm and YZ = 12 cm
Thus, in $$\triangle$$ XYZ, => $$(XZ)^2=(XY)^2+(YZ)^2$$
=> $$(XZ)^2=(5)^2+(12)^2$$
=> $$(XZ)^2=25+144=169$$
=> $$XZ=\sqrt{169}=13$$ cm
To find : $$\sec Z=\frac{XZ}{YZ}$$
= $$\frac{13}{12}$$
=> Ans - (C)
Create a FREE account and get: