Question 25

ΔXYZ is right angled at Y. If cotX = 5/12, then what is the value of secZ ?

Solution

Given : $$\cot X$$ = $$\frac{5}{12}$$

Also, $$\cot X=\frac{XY}{YZ}=\frac{5}{12}$$

Let XY = 5 cm and YZ = 12 cm

Thus, in $$\triangle$$ XYZ, => $$(XZ)^2=(XY)^2+(YZ)^2$$

=> $$(XZ)^2=(5)^2+(12)^2$$

=> $$(XZ)^2=25+144=169$$

=> $$XZ=\sqrt{169}=13$$ cm

To find : $$\sec Z=\frac{XZ}{YZ}$$

= $$\frac{13}{12}$$

=> Ans - (C)


Create a FREE account and get:

  • Free SSC Study Material - 18000 Questions
  • 230+ SSC previous papers with solutions PDF
  • 100+ SSC Online Tests for Free

cracku

Boost your Prep!

Download App