Sign in
Please select an account to continue using cracku.in
↓ →
Let P(x) be a quadratic polynomial such that $$\begin{vmatrix}P(0) & P(1)\\P(0) & P(2)\end{vmatrix} = 0$$ Let P(0) = 2 and P(1) + P(2) + P(3) = 14. Then P(4) equals
Let $$P(x)=ax^2+bx+c$$, and it is given that P(0) = 2.
=> $$a(0)+b(0)+c=2$$ => $$c=2$$
$$\begin{vmatrix}P(0) & P(1)\\P(0) & P(2)\end{vmatrix} = 0$$
=> $$P\left(0\right)P\left(2\right)-P\left(0\right)P\left(1\right)=0$$
=> $$P(1)=P(2)$$
=> $$a+b+2=4a+2b+2$$
=> $$b=-3a$$
It is also given that -
$$P(1) + P(2) + P(3) = 14$$
$$a+b+2+4a+2b+2+9a+3b+2=14$$
$$14a+6b=8$$ (Substituting the value of b = -3a)
$$14a-18a=8$$ => $$a=-2$$
Thus, $$b=-3(-2)=6$$
Therefore, $$P(x)=-2x^2+6x+2$$
=> $$P(4)=-2*4^2+6*4+2$$
=> $$P(4)=-32+24+2$$
=> $$P(4)=-6$$
Create a FREE account and get: