Sign in
Please select an account to continue using cracku.in
↓ →
Let $$a_{1} a_{2}, a_{3}$$ be three distinct real numbers in geometric progression. If the equations $$a_{1}x^{2} + 2a_{2} x + a_{3} = 0$$ and $$b_{1}x^{2} + 2b_{2}x + b_{3} = 0$$ has a common root,then which of the following is necessarily true?
Given, $$a_{1} a_{2}, a_{3}$$ are in G.P.
Let the common ratio of the G.P. be $$r$$
So, $$a_2=a_1r,\ a_3=a_1r^2$$
Putting the values in equation, $$a_{1}x^{2} + 2a_{2} x + a_{3} = 0$$
So, $$a_1x^2+2a_1xr+a_1r^2=0$$
or, $$a_1\left(x^2+2xr+r^2\right)=0$$
or, $$a_1\left(x+r\right)^2=0$$
Now, $$a_1\ne\ 0$$
So, $$\left(x+r\right)^2=0$$
or, $$x=-r$$ is the only root
So the common root is also $$x=-r$$
Putting this in the second equation, $$b_{1}x^{2} + 2b_{2}x + b_{3} = 0$$
or, $$b_{1}r^{2} - 2b_{2}r + b_{3} = 0$$
Now we can replace $$r^2=\dfrac{a_3}{a_1},\ r=\dfrac{a_2}{a_1}$$
So, $$b_1\cdot\dfrac{a_3}{a_1}+b_3=2b_2\cdot\dfrac{a_2}{a_1}$$
Dividing all terms by $$a_3$$,
$$\dfrac{b_1}{a_1}+\dfrac{b_3}{a_3}=2\cdot\dfrac{b_2a_2}{a_1a_3}=\dfrac{2b_2a_2}{a_2^2}=\dfrac{2b_2}{a_2}$$
(Since, $$a_1,a_2,a_3$$ are in G.P., $$a_1\cdot a_3=a_2^2$$)
so, $$\dfrac{b_1}{a_1}+\dfrac{b_3}{a_3}=\dfrac{2b_2}{a_2}$$
or, $$\dfrac{b_1}{a_1},\dfrac{b_2}{a_2},\dfrac{b_3}{a_3}$$ are in A.P.
Create a FREE account and get: