If $$\tan \alpha = \sqrt{3} + 2,$$ then the value of $$\tan \alpha - \cot \alpha$$ is
$$\tan \alpha = \sqrt{3} + 2$$Â Â Eq.(1)
$$\tan \alpha - \cot \alpha$$
$$\tan \alpha - \frac{1}{\tan \alpha}$$
$$\frac{\tan \alpha^{2} - {1}} {\tan \alpha}$$Â Â Eq.(2)
Put Eq.(1) in Eq.(2).
$$\frac{(\sqrt{3}+2)^{2}-1}{\sqrt{3}+2}$$
$$\frac{(3+4\sqrt{3}+4)-1}{\sqrt{3}+2}$$
$$\frac{6+4\sqrt{3}}{\sqrt{3}+2}$$
Now multiply $$(\sqrt{3} - 2)$$ in numerator and denominator.
$$\frac{6+4\sqrt{3}}{\sqrt{3}+2}$$
$$(\frac{6+4\sqrt{3}}{\sqrt{3}+2})\times(\frac{\sqrt{3}-2}{\sqrt{3}-2})$$
After apply multiplication got $$\frac{6\sqrt{3}-12+12-8\sqrt{3}}{-1}$$
$$\frac{-2\sqrt{3}}{-1}$$
$${2\sqrt{3}}$$
Create a FREE account and get: