We know that sum of cubes of first n natural numbers is = $$(\frac{n(n+1)}{2})^2$$
and we are provided with $$1^{3} , 2^{3} , 3^{3} , 4^{3} , 5^{3} , 6^{3} , 7^{3}$$
number of elements = 7
Sum of the given elements = $$(\frac{7(7+1)}{2})^2$$ = 784
Mean = $$\frac{SumofElements}{NumberofElements}$$ = $$\frac{784}{7}$$ = 112
Create a FREE account and get: