Sign in
Please select an account to continue using cracku.in
↓ →
Consider the following statements:
(i) When 0 < x < 1, then $$\dfrac{1}{1+x} < 1 - x + x^{2}$$.
(ii) When 0 < x < 1, then $$\dfrac{1}{1+x} > 1 - x + x^{2}$$.
(iii) When -1 < x < 0, then $$\dfrac{1}{1+x} < 1 - x + x^{2}$$.
(iv) When -1 < x < 0, then $$\dfrac{1}{1+x} > 1 - x + x^{2}$$.
$$\dfrac{1}{1+x} < 1 - x + x^{2}$$
$$\dfrac{1}{1+x}-\left(1-x+x^2\right)<0$$
$$\dfrac{1-\left(1+x\right)\left(1-x+x^2\right)}{1+x}<0$$
$$\dfrac{1-\left(1+x^3\right)}{1+x}<0$$
$$\dfrac{1-1-x^3}{1+x}<0$$
$$\dfrac{x^3}{1+x}>0$$
The solution for the above equation is $$x<-1\ or\ x>0$$
$$\dfrac{1}{1+x} > 1 - x + x^{2}$$
$$\dfrac{1}{1+x}-\left(1-x+x^2\right)>0$$
$$\dfrac{1-\left(1+x\right)\left(1-x+x^2\right)}{1+x}>0$$
$$\dfrac{1-\left(1+x^3\right)}{1+x}>0$$
$$\dfrac{1-1-x^3}{1+x}>0$$
$$\dfrac{x^3}{1+x}<0$$
The solution for the above equation is $$-1<x<0$$
Thus, $$\dfrac{1}{1+x} < 1 - x + x^{2}$$ is satisfied when $$x<-1\ or\ x>0$$
and, $$\dfrac{1}{1+x} > 1 - x + x^{2}$$ is satisfied when $$-1<x<0$$
Thus, statements (i) and (iv) are correct.
Create a FREE account and get: