Consider the following statements:
(a) When 0 < x < 1, then $$\frac{1}{1+x} < 1 - x + x^{2}$$.
(b) When 0 < x < 1, then $$\frac{1}{1+x} > 1 - x + x^{2}$$.
(c) When -1 < x < 0, then $$\frac{1}{1+x} < 1 - x + x^{2}$$.
(d) When -1 < x < 0, then $$\frac{1}{1+x} > 1 - x + x^{2}$$.
Create a FREE account and get: