Sign in
Please select an account to continue using cracku.in
↓ →
The set of all real values of p for which the equation $$3 \sin^{2}x + 12 \cos x - 3 = p$$ has at least one solution is
$$3 \sin^{2}x + 12 \cos x - 3 = p$$
$$3\left(1-\cos^2x\right)+12\cos x-3=p$$
$$3-3\cos^2x+12\cos x-3=p$$
$$-3\cos^2x+12\cos x=p$$
Adding and subtracting 12 in LHS
$$-3\cos^2x+12\cos x-12+12=p$$
$$-3\left(\cos^2x-4\cos x+4\right)+12=p$$
$$-3\left(\cos x-2\right)^2+12=p\rightarrow1$$
Now, we know that -
$$-1\le\cos x\le1$$
$$-3\le\cos x-2\le-1$$
$$1\le\left(\cos x-2\right)^2\le9$$
$$-27\le-3\left(\cos x-2\right)^2\le-3$$
$$-15\le-3\left(\cos x-2\right)^2+12\le9$$
Substituting it as p, from eq. 1-
$$-15\le p\le9$$
Create a FREE account and get: