ABC is a triangle and the sides AB, BC and CA are produced to E, F and G respectively. If $$\angle$$CBE = $$\angle$$ACF = 130° then the value of $$\angle$$GAB is
Using linear pair property :
=> $$\angle$$ACB + $$\angle$$ACF = 180°
=> $$\angle$$ACB = 180°-130° = 50°
Similarly, $$\angle$$ABC = 50°
Now, in $$\triangle$$ABC
$$\angle$$BAC = 180°-(50°+50°) = 180°-100°
=> $$\angle$$BAC = 80°
Again using linear pair property, we get :
$$\angle$$GAB + $$\angle$$BAC = 180°
=> $$\angle$$GAB = 180°-80° = 100°
Create a FREE account and get: