If 5 boys and 4 girls sit in a row at random then the probability the boys and girls sit alternatively is
Given that 5 boys and 4 girls sit in a row at random.
Total number of ways in which 9 persons can be arranged in a row = 9 $$\times$$ 8 $$\times$$ 7 $$\times$$ 6 $$\times$$ 5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1
= 5 boys can be arranged themselves in 5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1 ways.
B 1 B 2 B 3 B 4 B
Now,
Then there are 4 positions left(1,2,3,4,).
The 4 girls can be seated in (1,2,3,4) = 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1 ways.
The girls can be arranged themselves in 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1 ways.
Therefore, the number of ways both girls and boys can sit alternatively = 5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1
Hence,
Required probability =
(5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1 $$\\times 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1)\( 9 $$\times$$ 8 $$\times$$ 7 $$\times$$ 6 $$\times$$ 5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1)
= (120 $$\times$$ 24)\(9 $$\times$$ 8 $$\times$$ 7 $$\times$$ 6 $$\times$$ 5 $$\times$$ 4 $$\times$$ 3 $$\times$$ 2 $$\times$$ 1)
= 4/504
= 1/126. Answer
Create a FREE account and get: