A, B and C are three points on the circle with centre O. In $$\triangle$$ABC if $$\angle$$B = $$60^\circ$$, $$\angle$$C = $$70^\circ$$ then $$\angle$$BOC =
In $$\triangle$$ABC,
$$\angle$$A + $$\angle$$B + $$\angle$$C = $$180^\circ$$
$$\angle$$A + $$60^\circ$$ + $$70^\circ$$ = $$180^\circ$$
$$\angle$$A = $$50^\circ$$
Angle subtended by the arc at the centre is twice the angle subtended by the arc at any point circle.
$$\Rightarrow$$ Angle subtended by the arc BC at centre O is twice the angle subtended by arc BC at point A.
$$\Rightarrow$$ $$\angle$$BOC = 2$$\angle$$A
$$\Rightarrow$$ $$\angle$$BOC = $$100^\circ$$
Create a FREE account and get: