Question 138

A, B and C are three points on the circle with centre O. In $$\triangle$$ABC if $$\angle$$B = $$60^\circ$$, $$\angle$$C = $$70^\circ$$ then $$\angle$$BOC =

Solution

In $$\triangle$$ABC,

$$\angle$$A + $$\angle$$B + $$\angle$$C = $$180^\circ$$

$$\angle$$A + $$60^\circ$$ + $$70^\circ$$ = $$180^\circ$$

$$\angle$$A = $$50^\circ$$

Angle subtended by the arc at the centre is twice the angle subtended by the arc at any point circle.

$$\Rightarrow$$ Angle subtended by the arc BC at centre O is twice the angle subtended by arc BC at point A.

$$\Rightarrow$$  $$\angle$$BOC = 2$$\angle$$A

$$\Rightarrow$$  $$\angle$$BOC = $$100^\circ$$


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App