Question 137

I. $$6x^{2}+29x+35=0$$

II. $$3y^{2} +11y+10=0$$

Solution

I.$$6x^{2} + 29x + 35 = 0$$

=> $$6x^2 + 15x + 14x + 35 = 0$$

=> $$3x (2x + 5) + 7 (2x + 5) = 0$$

=> $$(2x + 5) (3x + 7) = 0$$

=> $$x = \frac{-7}{3} , \frac{-5}{2}$$

II.$$3y^{2} + 11y + 10 = 0$$

=> $$3y^2 + 6y + 5y + 10 = 0$$

=> $$3y (y + 2) + 5 (y + 2) = 0$$

=> $$(y + 2) (3y + 5) = 0$$

=> $$y = -2 , \frac{-5}{3}$$

Hence $$x < y$$


Create a FREE account and get:

  • Banking Quant Shortcuts PDF
  • Free Banking Study Material - (15000 Questions)
  • 135+ Banking previous papers with solutions PDF
  • 100+ Online Tests for Free

cracku

Boost your Prep!

Download App