In a triangle $$ABC, \angle A = \angle B = \angle C$$. The bisectors of the angles $$\angle B$$ and $$\angle C$$ interect at D. Then $$\angle BDC =$$
In a $$\ \triangle\ $$ ABC,
$$\ \angle\ $$A+$$\ \angle\ $$B+$$\ \angle\ $$C=180$$\ ^{\circ\ }$$
$$\angle\ $$A=$$\angle\ $$B=$$\angle\ $$C=60$$^{\circ\ }$$
since, bisector of $$\angle\ $$B and$$\angle\ $$C meet at D
$$\therefore\ $$Â $$\angle\ $$DBC=$$\angle\ $$DCB=30$$^{\circ\ }$$
In$$\triangle\ $$DBC,
$$\angle\ $$DBC+$$\angle\ $$DCB+$$\angle\ $$BDC=180$$^{\circ\ }$$
30$$^{\circ\ }$$+30$$^{\circ\ }$$+$$^{ }\angle\ $$BDC=180$$^{\circ\ }$$
$$\angle\ $$BDC=120$$^{\circ\ }$$
Create a FREE account and get: