If the hypotenuse of a right angled isosceles triangle is 8 cm. then its area, in square centimeters, is
Let the length of equal sides of right angled isosceles triangle = a
In the triangle,
a$$^2$$ + a$$^2$$ = 8$$^2$$
$$\Rightarrow$$ 2a$$^2$$ = 64
$$\Rightarrow$$ a$$^2$$ = 32
$$\Rightarrow$$ a = $$4\sqrt{2}$$ cm
$$\therefore\ $$Area of the right angled isosceles triangle = $$\frac{1}{2}\times a\times a$$
$$=\frac{1}{2}\times4\sqrt{2}\times4\sqrt{2}$$
$$=$$ 16 cm$$^2$$
Create a FREE account and get: