If r is the remainder 2013 when each of 6454, 7306 and 8797is divided by the greatest number d(d > 1), then (d—r) is equal to:
Let the numbers are $$6454-r, 7306-r, 8797$$
Hence, the HCF of the number $$(7306-6454),(8797-7306), (8797-6454)$$
$$852=2\times 2\times 3\times 71$$
$$1491=3\times 71\times 7$$
$$2343=3\times 71\times 11$$
Hence, the HCF$$ d=3\times 71=213$$
Now, $$213\times 3+64$$
So, r=64, Hence, the required number $$=d-r=213-64=149$$.
Create a FREE account and get: