Question 128

If $$S_1, S_2$$ and $$S_3$$ denote the sums of the first n, 2n and 3n terms respectively of an arithmetic progression then $$\frac{S_3}{S_2 - S_1} =$$

Solution

$$S_1=\frac{n}{2}\left[2a+\left(n-1\right)d\right]$$

$$S_2=n\left[2a+\left(2n-1\right)d\right]$$

$$S_3=\frac{3n}{2}\left[2a+\left(3n-1\right)d\right]$$

The desired operation results in:ย 
$$\frac{3\left[2a+\left(3n-1\right)d\right]}{2\left[2a+\left(2n-1\right)d\right]-2a-\left(n-1\right)d}$$
=$$\frac{\left[6a+9nd-3d\right]}{2a+3nd-d}=3$$


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App