Sign in
Please select an account to continue using cracku.in
↓ →
$$\lim_{x \rightarrow 3} \frac{x^3 - 3x^2}{3x^2 - 4x - 15} =$$
Solution:
As on putting limit ,$$\lim_{x \rightarrow 3}$$ f(x) -> $$\frac{0}{0}\ format$$
So using L hospitals rule
Differentiating Nr and Dr. $$\lim_{x \rightarrow 3}$$ $$\frac{\left(3x^2\ -\ 6x\right)}{6x\ -\ 4}$$
Putting the limits,
$$\frac{\left(3x^2\ -\ 6x\right)}{6x\ -\ 4}\ =\ \frac{\left(3.3^2\ -\ 6.3\right)}{6.3\ -\ 4}=\ \frac{\left(27-18\right)}{14}=\ \frac{9}{14}$$
$$\ \frac{9}{14}$$ Answer
Create a FREE account and get: