If $$7 \sin^2 \theta + 3 \cos^2 \theta = 4, 0^\circ < \theta < 90^\circ$$, then the value of $$(\tan^2 2 \theta + \cosec^2 2 \theta)$$ is:
Expression :Â $$7 \sin^2 \theta + 3 \cos^2 \theta = 4, 0^\circ < \theta < 90^\circ$$
=> $$7sin^2\theta+3(1-sin^2\theta)=4$$
=> $$4sin^2\theta=1$$
=> $$sin\theta=\sqrt{\frac{1}{4}}$$
=> $$\theta=sin^{-1}(\frac{1}{2})=30^\circ$$
To find : $$(\tan^2 2 \theta + \cosec^2 2 \theta)$$
= $$tan^2(60^\circ)+cosec^2(60^\circ)$$
= $$3+\frac{4}{3}=\frac{13}{3}$$
=> Ans - (C)
Create a FREE account and get: