The lengths of the parallel sides of a trapezium are 51 cm and 21 cm, and that of each ofthe other two sides is 39 cm. What is the area (in cm$$^2$$) of the trapezium?
We draw the trapezium is given belowÂ
From the above diagram, we apply the Pythagoras theorem  in $$ \triangle ABC $$
 then $$( AC)^2 = (39)^2 - (15)^2 $$
$$\Rightarrow (AC)^2 = 1521 - 225 $$
$$\Rightarrow (AC)^2 = 1296 $$
$$\Rightarrow AC = 36 $$
then Area of trapezium = $$ \frac {1}{2} \times (sum of sides) \times  (Distance between them) $$
                = $$ \frac {1}{2} \times (21+51) \times (36) $$
                  = $$ \frac {1}{2} \times 72 \times 36 $$
                  = $$36 \times 36 $$
                 = $$ 1296 cm^2 $$ AnsÂ
Create a FREE account and get: