The constant term in the bionomial expansion of $$\left(3x^2 - \frac{1}{4x}\right)^6$$ is
Solution:
The constant term in the bionomial expansion of $$\left(3x^2 - \frac{1}{4x}\right)^6$$ is
$$^{n}C_r$$ $$\left(3x^2\right)^{\left(6-r\right)}\left(-\frac{1}{4x}\right)^r$$
$$3^{\left(6-r\right)}x^{\left(12-2r\right)}\frac{\left(-1\right)^r}{4^rx^r}$$
= Constant $$x^{\left(12-2r\right)}x^(-r)$$
= Constant$$x^{\left(12-2r\ -r\right)}\ =Constant\ x^{\left(12-3r\right)}$$
For constant term , power of x should be 0
12-3r = 0
r =4
Constant = $$^6Cr\ 3^{\left(6-r\right)}\ \frac{\left(-1\right)^r}{\left(4\right)^r}\ =\ \frac{6!}{\left(6-2\right)!2!}.3^{\left(6-4\right)}\left(-\frac{1}{4}\right)^4$$
=$$=\ \frac{6!}{\left(4\right)!2!}.3^{\left(2\right)}\frac{1}{4^4}^{ }=\frac{5.6}{2}.9.\left(\frac{1}{256}\right)$$
= 135/256
Create a FREE account and get: