$$6 \cos \theta - 7 \sin \theta = 0 \Rightarrow (7 \cos 2\theta + 6 \sin 2\theta)^2 =$$
 we have given thatÂ
  $$6 \cos \theta - 7 \sin \theta = 0 $$        equation 1 and
  $$(7 \cos 2\theta + 6 \sin 2\theta)^2 =$$    equation 2Â
then solving equation 1 we getÂ
$$6 \cos \theta - 7 \sin \theta = 0 $$
$$ \tan \theta$$Â = 6\7Â
now solving equation 2Â
$$(7 \cos 2\theta + 6 \sin 2\theta)^2 =$$Â Â here we know thatÂ
$$ \cos 2\theta$$ = $$\cos\theta^{2}$$ - $$\sin\theta^{2}$$ and   $$ \sin 2\theta$$ = 2$$\sin\theta$$ $$\cos\theta$$
put the value in equation 2 we getÂ
=Â Â (7($$\cos\theta^{2}$$ - $$\sin\theta^{2}$$) + 6 ( 2$$ \sin \theta$$ $$\cos\theta$$))^2 Â
on solving ge getÂ
= 7\6$$\times$$ $$tan\theta$$ $$7^{2}$$
= 49Â answerÂ
Create a FREE account and get: