$$6 \cos \theta - 7 \sin \theta = 0 \Rightarrow (7 \cos 2\theta + 6 \sin 2\theta)^2 =$$
we have given that
$$6 \cos \theta - 7 \sin \theta = 0 $$ equation 1 and
$$(7 \cos 2\theta + 6 \sin 2\theta)^2 =$$ equation 2
then solving equation 1 we get
$$6 \cos \theta - 7 \sin \theta = 0 $$
$$ \tan \theta$$ = 6\7
now solving equation 2
$$(7 \cos 2\theta + 6 \sin 2\theta)^2 =$$ here we know that
$$ \cos 2\theta$$ = $$\cos\theta^{2}$$ - $$\sin\theta^{2}$$ and $$ \sin 2\theta$$ = 2$$\sin\theta$$ $$\cos\theta$$
put the value in equation 2 we get
= (7($$\cos\theta^{2}$$ - $$\sin\theta^{2}$$) + 6 ( 2$$ \sin \theta$$ $$\cos\theta$$))^2
on solving ge get
= 7\6$$\times$$ $$tan\theta$$ $$7^{2}$$
= 49 answer
Create a FREE account and get: