Sign in
Please select an account to continue using cracku.in
↓ →
Suppose that $$\log_{2} [\log_{3}(\log_{4}a)] = \log_{3} [\log_{4} (\log_{2}b)] = \log_{4} [\log_{2} (\log_{3}c)] = 0$$. Then the value of a + b + c is
We know that $$\log_{2} [\log_{3}(\log_{4}a)] = \log_{3} [\log_{4} (\log_{2}b)] = \log_{4} [\log_{2} (\log_{3}c)] = 0$$
Now Equating, $$\log_2[\log_3(\log_4a)]=0$$
If we take 2 on RHS, it will be $$[\log_3(\log_4a)]=2^0$$
$$\log_3(\log_4a)=1$$
Now, again taking 3 on the RHS,
$$(\log_4a)=3^1$$
Now taking 4 on RHS
$$a=4^3=64$$
Similarly, equating $$\log_3[\log_4(\log_2b)]=0$$
If we take 3 on RHS, it will be $$\log_4(\log_2b)=3^0$$
$$\log_4(\log_2b)=1$$
Now taking 4 on RHS
$$\log_2b=4^1$$
Now taking 2 on the RHS
$$b=2^4=16$$
Similarly, equating $$\log_4[\log_2(\log_3c)]=0$$
Now taking 4 on RHS
$$\log_2(\log_3c)=1$$
Now, taking 2 on RHS
$$\log_3c=2$$
Thus, $$c=9$$
Therefore, a+b+c = 64+16+9 = 89
Create a FREE account and get: