Sign in
Please select an account to continue using cracku.in
↓ →
If $$\theta$$ lies in the first quadrant and $$5 \tan \theta = 4$$, then $$\frac{5 \sin \theta - 3 \cos \theta}{\sin \theta + 2 \cos \theta} =$$
Solution
Given $$5 \tan \theta = 4$$
So $$ tan \theta $$ = (4/5)
P = 4
B = 5
H= $$\sqrt{\ \left(4^2\right)\ +\left(5^2\right)}$$ = $$\sqrt{41\ }$$
$$ sin \theta $$ = (4/$$\sqrt{41\ }$$)
$$ cos \theta $$ = (5/$$\sqrt{41\ }$$)
So
= {5 (4/$$\sqrt{41\ }$$) - 3 (5/$$\sqrt{41\ }$$) } / {(4/$$\sqrt{41\ }$$) + 2 (5/$$\sqrt{41\ }$$) }
={20 $$\sqrt{41\ }$$ - 15 $$\sqrt{41\ }$$} / {4 $$\sqrt{41\ }$$ + 10 $$\sqrt{41\ }$$}
= $$\frac{5}{14}$$ Answer
Create a FREE account and get: