If $$\theta$$ lies in the first quadrant and $$5 \tan \theta = 4$$, then $$\frac{5 \sin \theta - 3 \cos \theta}{\sin \theta + 2 \cos \theta} =$$
SolutionÂ
Given $$5 \tan \theta = 4$$
So $$ tan \theta $$ = (4/5)
P = 4
B = 5
H=Â $$\sqrt{\ \left(4^2\right)\ +\left(5^2\right)}$$ = $$\sqrt{41\ }$$
$$ sin \theta $$ = (4/$$\sqrt{41\ }$$)
$$ cos \theta $$ = (5/$$\sqrt{41\ }$$)
SoÂ
= {5 (4/$$\sqrt{41\ }$$)Â - 3Â (5/$$\sqrt{41\ }$$) } / {(4/$$\sqrt{41\ }$$) + 2Â (5/$$\sqrt{41\ }$$)Â }
={20Â $$\sqrt{41\ }$$ - 15Â $$\sqrt{41\ }$$} / {4Â $$\sqrt{41\ }$$ + 10Â $$\sqrt{41\ }$$}
=Â $$\frac{5}{14}$$ Answer
Create a FREE account and get: