Sign in
Please select an account to continue using cracku.in
↓ →
The number of pairs (x, y) satisfying the equation $$\sin x + \sin y = \sin(x + y)$$ and $$|x| + |y| = 1$$ is
Correct Answer: 6
$$\sin x + \sin y = \sin(x + y)$$
or, $$2\sin\left(\dfrac{x+y}{2}\right)\cos\left(\dfrac{x-y}{2}\right)=2\sin\left(\dfrac{x+y}{2}\right)\cos\left(\dfrac{x+y}{2}\right)$$
or, $$2\sin\left(\dfrac{x+y}{2}\right)\left(\cos\left(\dfrac{x-y}{2}\right)-\cos\left(\dfrac{x+y}{2}\right)\right)=0$$
so, either $$\sin\left(\dfrac{x+y}{2}\right)=0$$ ----->(1)
or, $$\cos\left(\dfrac{x-y}{2}\right)-\cos\left(\dfrac{x+y}{2}\right)=0$$ ------>(2)
Using (1), when $$\sin\left(\dfrac{x+y}{2}\right)=0$$, then $$x+y=0$$.
So, $$x=-y$$ ,or, $$\left|x\right|=\left|y\right|$$
Using, $$|x| + |y| = 1$$
We can say, $$2\left|x\right|=1$$
or, $$\left|x\right|=\dfrac{1}{2}$$
or, $$x=\pm\ \dfrac{1}{2}$$
So, the ordered pairs will be $$\left(\dfrac{1}{2},-\dfrac{1}{2}\right)$$ and $$\left(-\dfrac{1}{2},+\dfrac{1}{2}\right)$$ ------>(3)
Using (2), $$\cos\left(\dfrac{x-y}{2}\right)-\cos\left(\dfrac{x+y}{2}\right)=0$$
We know, $$\cos\theta\ $$ is an even function.
So, either, $$\dfrac{x+y}{2}=\dfrac{x-y}{2}$$ => $$y=0$$
or, $$\dfrac{x+y}{2}=\dfrac{y-x}{2}$$ =>$$x=0$$
Using, $$|x| + |y| = 1$$
When $$y=0$$, $$\left|x\right|=1$$ => $$x=\pm\ 1$$
And when $$x=0$$, $$\left|y\right|=1$$ => $$y=\pm\ 1$$
So, the ordered pairs are $$\left(0,\pm\ 1\right)$$ and $$\left(\pm\ 1,0\right)$$ ------->(4)
From (3) and (4), we can see there are in total 2+4=6 ordered pairs
Create a FREE account and get: