Let f and g be real valued functions defined on interval (-1, 1) such that $$g''(x)$$ is continuous, $$g(0) \neq 0, g'(0) = 0, g''(0) \neq 0$$, and $$f(x) = g(x)\sin x$$.
STATEMENT-1: $$\lim_{x \rightarrow 0}[g(x)\cot x - g(0) \cosec x] =f''(0).$$
STATEMENT-2: $$f'(0) = g(0)$$.
Create a FREE account and get: