For real a, b and c if $$a^2Â + b^2 + c^2$$ = ab + bc + ca, then find the value of $$(a + b + c)^2$$
$$a^2 + b^2 + c^2 = ab + bc + ca$$
Multiply both sides with 2, we get
$$2a^2 + 2b^2 + 2c^2$$ = 2ab + 2bc + 2ca$$
$$(a^2-2ab+b^2)+(b^2-2bc+c^2)+(c^2-2ca+a^2)=0$$
$$(a-b)^2+(b-c)^2+(c-a)^2=0$$
Since the sum of square is zero then each term should be zero
$$(a-b)^2=0$$
$$(b-c)^2=0$$
$$(c-a)^2=0$$
$$a=b=c$$--------1
$$(a + b + c)^2=a^2+b^2+c^2+2ab+2bc+2ca$$
from equation 1
$$=a^2+a^2+a^2+2\times3a^2$$
$$=9a^2$$
Create a FREE account and get: