Question 107

The base of a triangular shape field is 3 times its height. If the cost of cultivating the field at Rs.73.44 per hector is Rs. 991.44, then the height of triangular field (in meters) is

Solution

Let, the hight of triangular field be = h

  Then base = 3x 

Now cost per hectare 73.44 is Rs 991.44

So, area of field = $$ \dfrac{991.44}{73.44}$$

$$ \Rightarrow 13.5$$

we know that area of triangle = $$ \dfrac{1}{2} \times b \times h$$

Then,

$$ \Rightarrow \dfrac{1}{2} \times 3h \times h = 13.5$$

$$ \Rightarrow 3h^2 = 27$$

$$ \Rightarrow h^2 = \dfrac{27}{3}$$

$$ \Rightarrow h^2 = 9$$

$$ \Rightarrow h = 3$$

In meters it will be   

   $$ \Rightarrow (h \times 100)m$$

  $$ \Rightarrow (3 \times 100)m $$ 

   $$ \Rightarrow 300m$$                            


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App