If $$a + b + c = 19, ab + bc + ca = 120$$, then what is the value of $$a^3 + b^3 + c^3 - 3abc$$?
$$(a + b + c)^2 = a^2 +b^2 + c^2 + 2ab +Â 2bc +Â 2ca$$
$$ 19^2 =Â a^2 +b^2 + c^2 + 2(120)$$
$$a^2 +b^2 + c^2 = 361 - 240 = 121$$
$$a^3 + b^3 + c^3 - 3abc$$
=$$ (a + b + c)(a^2 + b^2 + c^2 -ab -bc - ca)$$
= 19(121$$ \times -120) = 19$$
Create a FREE account and get: