The height of a right circular cone is 35 cm and the area of its curved surface is four times the area of its base. What is the volume of the cone (in $$10^{-3} m^3$$ and correct up to three decimal places)?
The height of the cone (h) = 35 cm
let the slant height is l and radius r Â
By the given cone $$\pi r l = 4 \pi r^2 $$
$$\Rightarrow l = 4 r $$
for a cone we have $$ l^2 = r^2 + h^2 $$Â
put the value l = 4rÂ
then $$(4r)^2 = r^2 +35 $$Â
$$\Rightarrow r^2Â = \dfrac {35\times 7}{ 3}$$
$$\Rightarrow r^2 = \dfrac{235}{3} $$
then volue of cone = $$ \dfrac {1}{3} \pi r^2 h $$Â
$$\Rightarrow \dfrac {1}{3} \times \dfrac {22}{7} \times {245}{3} \times 35 cm^2 $$
$$\Rightarrow 2.99444 cm ^2 $$
therefore option (C) 2.994Â AnsÂ
Create a FREE account and get: