Equation (i) : $$2x+y=15$$
Equation (ii) : $$2y+z=25$$
Equation (iii) : $$2z+x=26$$
Adding the three equations, => $$3x+3y+3z=15+25+26$$
=> $$3(x+y+z)=66$$
=> $$x+y+z=\frac{66}{3}=22$$ ------------(iv)
Subtracting equation (i) from (iv), => $$(z)+(x-2x)+(y-y)=(22-15)$$
=> $$z-x=7$$ -------------(v)
Adding equations (v) and (iii), => $$3z=26+7=33$$
=> $$z=\frac{33}{3}=11$$
=> Ans - (E)
Create a FREE account and get: