Sign in
Please select an account to continue using cracku.in
↓ →
If the length of the hypotenuse of right angled Iscoceles triangle is 12 cm , then the area of the triangle in sqaure centimeters is
Solution
Let Perpendicular be p, base be b and Hypotenuse be h
As it is isosceles right angle triangle,
so P=B
According to Pythogaras Theorem
$$h\ =\ \sqrt{\ p^{2\ }+b^2}$$
$$12=\ \sqrt{\ b^{2\ }+b^2}$$
$$12= \ \sqrt{\ 2b^{2\ }}$$
$$12=\ \sqrt{\ 2}\ b$$
$$b\ =\ 6\sqrt{\ 2}$$
Area = $$\ \frac{\ 1}{2}\ \times\ product\ of\ sides\ \times\ \sin\ of\ included\ angle\ $$
= $$\ \frac{\ 1}{2}\ \times\ b\times\ b\ \times\ \sin\ 90^{\circ\ }$$
= $$\ \frac{\ 1}{2}\ \times\ \left(6\sqrt{\ 2}\ \right)^2\times\ 1$$
= $$\ \frac{\ 1}{2}\ \times\ 72\times\ 1$$
=36 Answer
Create a FREE account and get: