Expression : $$8cos10^\circ cos20^\circ cos 40^\circ$$
Multiply $$sin(10^\circ)$$ in numerator and denominator.
= $$(2sin10^\circ cos10^\circ)\times(4 cos20^\circ cos 40^\circ)\times\frac{1}{sin10^\circ}$$
Similarly,
= $$(2sin10^\circ cos10^\circ)\times(2sin20^\circ cos20^\circ)\times(2sin40^\circ cos 40^\circ)\times\frac{1}{sin10^\circ sin20^\circ sin40^\circ}$$
Using, $$2sinA cosA=sin2A$$
= $$(sin20^\circ)\times(sin40^\circ)\times(sin80^\circ)\times\frac{1}{sin10^\circ sin20^\circ sin40^\circ}$$
= $$\frac{sin(80^\circ)}{sin(10^\circ)}$$
Also, $$sin(90^\circ-\theta)=cos\theta$$
= $$\frac{sin(90^\circ-10^\circ)}{sin(10^\circ)}=\frac{cos10^\circ}{sin10^\circ}$$
= $$cot10^\circ=tan80^\circ$$
=> Ans - (C)
Create a FREE account and get: