For the following questions answer them individually
General energy equation for a steady flow system is:
(a) $$H_1 + \frac{V_1^2}{2gj} + \frac{Z_1}{J} + Q = \frac{V_2^2}{2gJ} + Losses$$
(b) $$H_1 + \frac{V_1^2}{2gj} + \frac{Z_1}{J} + Q = \frac{V_2^2}{2gJ} + workdone + Losses$$
(c) $$H_1 + \frac{V_1^2}{2gj} + \frac{Z_1}{J} + Q = H_2 + \frac{V_2^2}{2gJ} + \frac{V_2}{J} + workdone + Losses$$
(d) $$H_1 + \frac{V_1^2}{2gj} + \frac{Z_1}{J} + Q = H_2 = \frac{V_2^2}{2gJ} + \frac{Z_1}{J} + workdone + Losses$$
The heat absorbed or rejected during a polytropic process is equal to:
(a) $$\left(\frac{\gamma - n}{\gamma - 1}\right)^{\frac{1}{2}} \times workdone$$
(b) $$\left(\frac{\gamma - n}{n - 1}\right)^{\frac{1}{2}} \times workdone$$
(c) $$\left(\frac{\gamma - n}{\gamma - 1}\right) \times workdone$$
(d) $$\left(\frac{\gamma - n}{\gamma - 1}\right)^2 \times workdone$$