Question 87

If A and B are complementary angles, then find the value of $$\cos A \cos B - \sin A \sin B$$.

Solution

If A and B are complementary angles then

A+B = 90

$$\cos A \cos B - \sin A \sin B$$.

          we know that                                              

  $$cos(A+B)=\cos A \cos B - \sin A \sin B$$.                               

$$ $$cos(A+B)

put value A+B=90

$$cos90=0$$


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App