If A and B are complementary angles, then find the value of $$\cos A \cos B - \sin A \sin B$$.
If A and B are complementary angles then
A+B = 90
$$\cos A \cos B - \sin A \sin B$$.
      we know that                       Â
  $$cos(A+B)=\cos A \cos B - \sin A \sin B$$.               Â
$$Â $$cos(A+B)
put value A+B=90
$$cos90=0$$
Create a FREE account and get: