Question 80

$$\frac{2}{\sqrt{10 + 2\sqrt{21}}} - \frac{1}{\sqrt{12 + 2\sqrt{35}}} - \frac{1}{\sqrt{8 + 2\sqrt{15}}} =$$

Solution

given thatĀ 

=Ā $$\frac{2}{\sqrt{10 + 2\sqrt{21}}} - \frac{1}{\sqrt{12 + 2\sqrt{35}}} - \frac{1}{\sqrt{8 + 2\sqrt{15}}} $$

we know that $$\sqrt{21}$$ = 4.58 ,Ā  $$\sqrt{35}$$ = 5.91 , $$\sqrt{15}$$ = 3.87Ā 

put the value in the equation we getĀ 

= $$\frac{2}{\sqrt{19}} - \frac{1}{\sqrt{19}} - \frac{1}{\sqrt{19}} $$Ā 

= 0Ā Answer


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App