Sign in
Please select an account to continue using cracku.in
↓ →
Let$$I = \int\frac{e^x}{e^{4x}+e^{2x}+1}dx, J = \int\frac{e^{-x}}{e^{-4x}+e^{-2x}+1}dx$$.Then, for an arbitrary constant C, the value of J - I equals
$$\frac{1}{2}\log\left(\frac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} + e^{x} + 1}{e^{2x} - e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{4x} + e^{2x} + 1}{e^{4x} - e^{2x} + 1}\right)+C$$
Create a FREE account and get:
Terms of Service
CAT Formulas PDF CAT Syllabus PDF CAT Study Plan PDF Cracku Brochure VARC Cheat Sheet MBA Handout PDF
Day-wise Structured & Planned Preparation Guide
By proceeding you agree to create your account
Free CAT Schedule PDF will be sent to your email address soon !!!