Last 10 months to CAT 2025 🥳 Get upto 60% Off today on CAT 2025 Courses here
Edit MetaData
Let$$I = \int\frac{e^x}{e^{4x}+e^{2x}+1}dx, J = \int\frac{e^{-x}}{e^{-4x}+e^{-2x}+1}dx$$.Then, for an arbitrary constant C, the value of J - I equals
$$\frac{1}{2}\log\left(\frac{e^{4x} - e^{2x} + 1}{e^{4x} + e^{2x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} + e^{x} + 1}{e^{2x} - e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{2x} - e^{x} + 1}{e^{2x} + e^{x} + 1}\right)+C$$
$$\frac{1}{2}\log\left(\frac{e^{4x} + e^{2x} + 1}{e^{4x} - e^{2x} + 1}\right)+C$$
Create a FREE account and get:
Login to your Cracku account.
Enter Valid Email
Follow us on
Incase of any issue contact support@cracku.in
Boost your Prep!
Detailed syllabus & Topic-wise Weightage
By proceeding you agree to create your account
Free CAT Syllabus PDF will be sent to your email address soon !!!
Join cracku.in for Expert Guidance.