If $$\left(\sqrt{\frac{3}{5}}\right)^a = \left(\sqrt{\frac{625}{81}}\right)^{\frac{a + 3}{2}}$$, then a =
The RHS of the equation can be modified as $$\left(\sqrt{\ \frac{81}{625}}\right)^{-\frac{\left(a+3\right)}{2}}=\left(\sqrt{\ \frac{3}{5}}\right)^{4\cdot\left(-\frac{\left(a+3\right)}{2}\right)}$$
As the bases are equal on both sides, respective powers can be equated:
a = -2*(a+3)
a = -2
Create a FREE account and get: