Question 77

If $$\left(\sqrt{\frac{3}{5}}\right)^a = \left(\sqrt{\frac{625}{81}}\right)^{\frac{a + 3}{2}}$$, then a =

Solution

The RHS of the equation can be modified as $$\left(\sqrt{\ \frac{81}{625}}\right)^{-\frac{\left(a+3\right)}{2}}=\left(\sqrt{\ \frac{3}{5}}\right)^{4\cdot\left(-\frac{\left(a+3\right)}{2}\right)}$$

As the bases are equal on both sides, respective powers can be equated:
a = -2*(a+3)
a = -2


Create a FREE account and get:

  • Download Maths Shortcuts PDF
  • Get 300+ previous papers with solutions PDF
  • 500+ Online Tests for Free

cracku

Boost your Prep!

Download App