In $$\triangle ABC$$ ,$$\angle B=60^\circ$$  $$\angle C=40^\circ$$ I is the incenter then find $$\angle BIC$$
In $$ \triangle ABC $$
given $$ \angle ABC = 60^\circ $$
$$ \angle ACB = 40^\circ $$
therefore $$ \angle BAC = 80^\circ $$ (180 - (60 + 40))
I is the incenter
incenter is the point where angle bisectors of a triangles meet
$$ \angle IBC = \frac{60}{2} = 30^\circ $$
$$ \angle ICB = \frac{40}{2} = 20^\circ $$
$$ \angle BIC = 180 - (30 + 20) = 180 - 50 = 130^\circ $$
Create a FREE account and get: