$$ (x+ \frac{1}{x})^2 = 4$$
Using the identity$$(a+b)^2=a^2+2 \times a \times b+b^2$$
$$(x+ \frac{1}{x})^2 = x^2+2 \times x \times \frac{1}{x}+ \frac{1}{x^2}$$
$$Â x^2+2 \times x \times \frac{1}{x}+ \frac{1}{x^2} =4 $$
$$Â x^2+ \frac{1}{x^2} +2=4 $$
solving we get
$$Â x^2+ \frac{1}{x^2} =2 $$
Create a FREE account and get: