$$ \cos (x-y) =\cos x \cos y +\sin x \sin y $$
$$ \cos (x+y) =\cos x \cos y -\sin x \sin y $$
$$ \cos (30-A) =\cos 30 \cos A+\sin 30 \sin A $$
$$ \cos (30+A) =\cos 30 \cos A -\sin 30 \sin A $$
Thus solving,
$$ \cos (30°-A) - \cos (30°+A) =\cos 30°×\cos A + \sin 30°×\sin A - \cos 30°×\cos A + \sin 30°×\sin A $$
$$ \cos (30°-A) - \cos (30°+A) =2×\sin 30°×\sin A $$
$$ \cos (30°-A) - \cos (30°+A) =2×\frac{1}{2}×\sin A $$
$$ \cos (30°-A) - \cos (30°+A) =\sin A $$
Create a FREE account and get: