$$(1 + \tan A) (1 + \tan B) = 2$$
$$ 1 + \tan B + \tan A + \tan A \tan B = 2 $$
$$ \tan A + \tan B + \tan A \tan B = 1 $$
$$ \tan A + \tan B = 1 -Â \tan A \tan BÂ $$
$$ \frac{Â \tan A + \tan B}{1 -Â \tan A \tan B} = 1 $$
$$ \frac{Â \tan x + \tan y}{1 -Â \tan x \tan y} = \tan (x+y) $$
$$ \frac{Â \tan A + \tan B}{1 -Â \tan A \tan B} = \tan(A+B) = 1 $$
$$ \tan (A+B) = \tan 45^\circ $$
therefore,$$Â A+B = 45^\circ $$
Create a FREE account and get: