Let $$a, b \epsilon R$$ and $$a^2 + b^2 \neq 0$$. Suppose $$S = \left\{z \epsilon C : z = \frac{1}{a + ibt}, t \epsilon R, t \neq 0\right\}$$, where $$i = \sqrt{-1}$$. If $$z = x + iy$$ and $$z \epsilon S$$, then (x, y) lies on
Create a FREE account and get: