The points in the xy-plane, which satisfy the equation
$$\sqrt{(x - 1)^2 + (y + 2)^2} = \sqrt{(x + 3)^2 + (y - 2)^2}$$
We are given the equation, $$\sqrt{(x - 1)^2 + (y + 2)^2} = \sqrt{(x + 3)^2 + (y - 2)^2}$$
Squaring on both sides, we get,
$$(x-1)^2+(y+2)^2\ =\ (x+3)^2+(y-2)^2$$
$$x^{2\ }+\ 1\ -\ 2x\ +\ y^2\ +\ 4\ +\ 4y\ =\ x^{2\ }+\ 9\ +\ 6x\ +\ y^2\ +\ 4\ -\ 4y\ $$
$$8y\ =\ 8x\ +\ 8$$
$$y\ =\ x\ \ +\ 1$$
The above statement represents a straight line.
Hence, the correct answer is option A.
Create a FREE account and get: