Question 42


In the diagram above, TU || PS and Points Q and R lies on PS. Also, $$\angle{PQT} = X°, \angle{RQT} = (X - 60)°$$, and $$\angle{TUR} = (X + 50)°$$.What is the measure of $$\angle{URS}$$?

Solution

TU || PS and Points Q and R lies on PS. Also, $$\angle{PQT} = X°, \angle{RQT} = (X - 60)°$$, and $$\angle{TUR} = (X + 50)°$$

$$\angle{PQT}+\angle{RQT}=180°$$

$$X+X-60° = 180°$$

$$2X=240°$$

$$X=120°$$

So $$\angle{TUR} = (X + 50)° = 120+50 =170°$$

Since $$\angle{TUR}$$ and $$\angle{URS}$$ are between TU || PS and Points Q and R lies on PS

So $$\angle{TUR} = \angle{URS} = 170°$$ (Alternate angles)

Option A is correct.


Create a FREE account and get:

  • Download RRB Study Material PDF
  • 45+ RRB previous papers with solutions PDF
  • 300+ Online RRB Tests for Free

cracku

Boost your Prep!

Download App