Let S be the set of all complex numbers z satisfying $$|z - 2 + i | \geq \sqrt 5$$ If the complex number $$Z_0$$ is such that $$\frac{1}{|z_0 - 1|}$$ is the maximum of the set $$\left\{\frac{1}{|z - 1|}: z \in S\right\}$$ then the principal argument of $$\frac{4 - z_0 - \overline{z_0}}{z_0 - \overline{z_0} + 2i}$$ is
Create a FREE account and get: