Let $$-\frac{\pi}{6} < \theta < \frac{\pi}{12}$$ Suppose $$\alpha_1$$ and $$\beta_1$$ are the roots of the equation $$x^2 - 2x \sec \theta + 1$$ and $$\alpha_2$$ and $$\beta_2$$ are the roots of the equation $$x^2 + 2x \tan \theta - 1 = 0$$. If $$\alpha_1 > \beta_1$$ and $$\alpha_2 > \beta_2$$ then $$\alpha_1 + \beta_2$$ equals
Create a FREE account and get: